Defense, July 17th 2024, FAU & HI-ERN
\[\rho(\mathbf{x}, t) = \int f(\mathbf{x},\boldsymbol{\xi}, t) \diff^3\xi \\ \rho\mathbf{u} = \int \boldsymbol{\xi}f(\mathbf{x},\boldsymbol{\xi}, t) \diff^3\xi \\ \rho E = \frac{1}{2}\int |\boldsymbol{\xi}|^2 f(\mathbf{x},\boldsymbol{\xi}, t) \diff^3\xi\]
\[\int \Omega(f) \diff^3\xi = 0 \\ \int \boldsymbol{\xi}\Omega(f) \diff^3\xi = \mathbf{0}\\ \int |\boldsymbol{\xi}|^2 \Omega(f) \diff^3\xi = 0\]
with $f^{eq}$ being a Maxwell-Boltzmann distribution
P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev., 93 (3) 1954Shallow WAter Lattice Boltzmann solvEr
\[\partial_t h + \nabla \cdot (h \mathbf{u}) = 0 \\ \partial_t (h \mathbf{u}) + \nabla \cdot (h \mathbf{u}\mathbf{u}) = -gh \nabla h +\\ \nu \nabla^2 (h\mathbf{u}) + 2\nu \nabla (\nabla \cdot (h\mathbf{u})) + \mathbf{F}_{tot}\]
W. Y. Tan, Shallow water hydrodynamics, 1992
\[ \mathbf{F}_{tot} = \mathbf{F}_{film} + \mathbf{F}_{fric} + \mathbf{F} \]
Quasisteady processes at low Re with subleading viscous terms
\[\partial_t h + \nabla \cdot (h \mathbf{u}) = 0 \\ 0 = -gh \nabla h - \frac{1}{\rho_0}h\nabla p - \nu\alpha_{\delta}(h) \mathbf{u} + \mathbf{F} \]
S. Zitz et al., Phys. Rev. E, 100(3) 2019
“Weeks of coding have saved me hours of thinking.”
\[\partial_t h + \nabla \cdot (h \mathbf{u}) = 0\\ \mathbf{u} \approx \frac{1}{\nu \alpha(h)}\left(-gh \nabla h -\frac{1}{\rho_0}h\nabla p + \mathbf{F}\right) \\ \partial_t h \approx \nabla \cdot \left(\frac{h^3}{3\mu}\nabla p\right)\]
S. Zitz et al., JOSS, 7(77) 2022
\[\partial_t h = \partial_x \left[\frac{h^3}{3\mu}\partial_x p + \sqrt{\frac{2k_BTh^3}{3\mu}}\mathcal{N}\right]\]
B. Davidovitch et al., PRL, 95 2005, G. Grün et al., J. Stat. Phys., 122 2006\[ t_0 = \frac{3\mu}{\gamma h_0^3q_0^4} \] Length scale $2\pi/q_0$ \[ q_0^2 = \frac{1}{2\gamma}\frac{\partial \Pi(h)}{\partial h}\bigg\rvert_{h=h_0} \]
\[F_{\text{fluc}} = \rho_0^{-1}\sqrt{2 k_B T \mu \alpha_{\delta}(h)}\mathcal{N}\]
S. Zitz, A. Scagliarini, J. Harting, Phys. Rev. E, 104 2021
\[ \chi_{\sigma}(\theta) \sim \log\left(h_0 L^{1/2}/S_0^{1/2}\right)/\log\left(\frac{a \theta}{\sigma}\right) \propto \frac{1}{\log(\theta/\sigma)} \]
\[ \Xi = \frac{\tau_d(\pi/6)}{\tau_d(\pi/9)} \propto {\frac{U(\pi/9)}{U(\pi/6)} \sim \frac{\left(\pi/9\right)^3}{\left(\pi/6\right)^3} = \left(\frac{2}{3}\right)^3 = 0.296...} \]
\[\theta(\mathbf{x},t) = \theta_0 + \delta\theta\left[\sin(q_{\theta}(x+v_xt))\sin(q_{\theta}(y+v_yt))\right]\]
K. Ichimura et al., Science, 288, 2000
Zitz et al., Phys. Rev. Fluids, 8 2023
Grawitter J., Stark H., Soft Matter, 17 2021
\[\Gamma = \frac{v_{\theta}}{U_{\theta}}, \quad U_{\theta} = \frac{\gamma\Theta^3}{9\mu}\]
\[\Delta h(t)\sim \frac{\lambda}{v_{\theta}}e^{\alpha t},\quad \Delta h(\tau_{\text{riv}})\sim \beta h_0\\ \tau_{\text{riv}} \sim \log(v_{\theta})\sim\log(\Gamma)\]
“If the only tool you have is a hammer, it is tempting to treat everything as if it were a nail.”